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Abstract. Within the framework of the phase-space representation of quantum mechanics
recently developed by Torres-Vega and Frederick we have solved for the exact solutions of the
Schr̈odinger equation of a Morse oscillator whose structures reveal the special complexity.

Since the first quantum distribution function in phase-space was introduced by Wigner [1] for
quantum correction to classical statistical mechanics, a variety of phase-space representations
of quantum mechanics have been proposed and found extensive uses in many areas of physics
and chemistry [2]. Development along this line has provided not only phase-space frameworks
to perform quantum mechanics but also profound insight into the relationship between quantum
and classical mechanics. Recently, a new scheme of quantum mechanical representation
in phase-space has been developed [3]. This formulation was based on the fundamental
operator mapping forQ andP : Q̂ → q

2 + ih̄ ∂
∂p

, P̂ → p

2 − ih̄ ∂
∂q

. This representation in
phase-space presents a remarkably similar formulation of quantum mechanics to the usual
one in position or momentum space, for the evolution equation of the phase-space quantum
wavefunction8(q, p) is of the Schr̈odinger type. Although there are still issues to be clarified
concerning this formulation, it provides a useful and interesting framework for constructing the
Schr̈odinger evolution equation, eigenfunction equations, probability conservation equations
and wavepacket dynamics directly in phase-space. In this paper we attempt to solve strictly for
the Schr̈odinger equation of a Morse oscillator in the phase-space representation of quantum
mechanics developed by Torres-Vega and Frederick [3] so as to contribute an exactly solvable
model. It might seem that the process of solving it would be trivial, but the structure of solutions
of the Morse oscillator displayed in quantum phase-space are worthy of further investigation.
Here, we only consider the case of one degree of freedom.

For any potentialV (x)which may be expanded in a series with a finite number of negative
powers and an infinite number of positive powers, the stationary-state Schrödinger equation
in the phase-space representation reads [3]{

1

2µ

(
p

2
− ih̄

∂

∂x

)2

+ V

(
x

2
+ ih̄

∂

∂p

)}
ψ(p, x) = Eψ(p, x) (1)
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wherep andx are the classical momentum and coordinate (real numbers);E(< 0) is an
eigenenergy andψ(p, x), which belongs toL2(2) with number 2 denoting two independent
variables, is the eigenfunction corresponding to the eigenenergyE. Using the relations

eipx/2h̄

(
ih̄
∂

∂p

)n
e−ipx/2h̄ =

(
x

2
+ ih̄

∂

∂p

)n
e−ipx/2h̄

(
−ih̄

∂

∂x

)n
eipx/2h̄ =

(
p

2
− ih̄

∂

∂x

)n (2)

and lettingψ(p, x) = e−ipx/2h̄φ(p, x), we can change equation (1) into another useful form{
− h̄

2

2µ

∂2

∂x2
+ V

(
x + ih̄

∂

∂p

)}
φ(p, x) = Eφ(p, x). (3)

For the potential of a Morse oscillator,V (x) = D(e−2βx − 2e−βx) in position representation
with D andβ being parameters, equation (3) gives{

− h̄
2

2µ

∂2

∂x2
+D(e−2βxT̂ 2 − 2e−βxT̂ )

}
φ(p, x) = Eφ(p, x). (4)

Here, we regard̂T = e−ih̄β ∂
∂p as the momentum displacement operator. This equation can be

solved analytically by means of the conventional procedures [4].
Making variable replacementξ = 2

√
2µD/h̄βe−βx , and placingsn =

√−2µE/h̄β,
n = √2µD/h̄β − (sn + 1

2) andφ(p, x) = φ(p, ξ), in equation (4), we obtainξ2 ∂
2

∂ξ2
+ ξ

∂

∂ξ
+

(n + sn +
1

2

)
ξ T̂ −

(
ξ T̂

2

)2

− s2
n

φ(p, ξ) = 0 (5)

which is analogous in form to that in position representation but the operatorT̂ is involved. In
view of the boundary conditions met byφ(p, x) for x-coordinate, choosing a trial solution

φ(p, x) = φ(p, ξ) = ξ sne−ξ T̂ /2u(p, ξ) (6)

and noting that [ξ, T̂ ] = 0 because [x, ih̄∂/∂p] = 0, then equation (5) can be converted to{
ξ
∂2

∂ξ2
+ (2sn + 1− ξ T̂ ) ∂

∂ξ
+ nT̂

}
u(p, ξ) = 0. (7)

This is a confluent hypergeometric equation for variableξ . If we expandu(p, ξ) in a series
aboutξ ,

u(p, ξ) =
∞∑
k=0

Ck(p)ξ
k (8)

then the solution to equation (7) satisfying the boundary condition forx-coordinate are such
generalized Laguerre (or Sonine) polynomials

un(p, ξ) = L2sn
n (ξ T̂ )C0(p) (n = 0, 1, 2, . . .) (9)

with n being a quantum number and determining an eigenenergy of the Morse oscillator in
quantum phase-space.C0(p)may be an arbitrarily reasonable function ofp-variable on which
we discuss some restrictions in the following. It is clear that the formula of the energy levels
is still [4]

En = −D
[
1− h̄β√

2µD

(
n +

1

2

)]2

(10)
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in which the quantum numbern only takes on positive integers satisfying the inequality
n <
√

2µD/h̄β − 1
2.

Up to now we have gained formally the complete solutions to the Schrödinger equation
of a Morse oscillator in the phase-space representation,

ψn(p, x) = Nne−ipx/2h̄ξ sne−ξ T̂ /2L2sn
n (ξ T̂ )C0(p)

ξ = 2
√

2µD/h̄βe−βx

En = −D
[
1− h̄β√

2µD

(
n +

1

2

)]2
(11)

whereNn is the normalized constant for a given quantum numbern. Actually, this set of
complete solutions is not yet determined thoroughly due to the existence of an arbitrary function
C0(p). Considering the boundary conditions forp-coordinate, theC0(p) must be required to
fulfil ∫ +∞

−∞
dp

∣∣∣∣ dkdpk C0(p)

∣∣∣∣ <∞ (k = 0, 1, 2, . . .). (12)

It is not surprising that the solutions to the Schrödinger equation are not unique in quantum
phase-space, just as there are no unique distribution functions in the formulation of quantum
mechanics in phase-space [2]. All these arise from the restriction of the uncertainty principle.
Consequently, we cannot expect that one of the solutions is physically more meaningful than
the others. As an illustration, we consider the following two simple classes ofC0(p)

(1) T̂ mC
(1)
0 (p) = C(1)0 (p),

(2) T̂ mC
(2)
0 (p) = C(2)0 (p)B(p)m B(p) > 0, m = 0, 1, 2, . . .

C
(2)
0 (p) = A(p)B(p)ip/h̄β T̂ mA(p) = A(p), T̂ mB(p) = B(p)

(13)

and thus the phase-space eigenfunctionsψn(p, x) corresponding to them become

9(1)
n (p, x) = N(1)

n e−ipx/2h̄C
(1)
0 (p)ξ sne−ξ/2L2sn

n (ξ)

9(2)
n (p, x) = N(2)

n e−ipx/2h̄C
(2)
0 (p)ξ sne−ξB(p)/2L2sn

n (ξB(p))
(14)

where indices (1) and (2) indicate the first and second class ofC0(p), respectively.
The eigenfunctions in position and momentum space can be easily obtained through the

Fourier projection transformation [3, 5]

ψn(x) =
∫ +∞

−∞
dp eipx/2h̄ψn(p, x)

φn(p) =
∫ +∞

−∞
dx e−ipx/2h̄ψn(p, x)

(15)

which do not change the eigenvalues of theψn(p, x). The results for the first class ofC0(p)

are

9(1)
n (x) =

{
N(1)
n

∫ +∞

−∞
dp C(1)0 (p)

}
ξ sne−ξ/2L2sn

n (ξ) (16a)

φ(1)n (p) = N(1)
n C

(1)
0 (p)

∫ +∞

−∞
dx eipx/h̄ξ sne−ξ/2L2sn

n (ξ) (16b)

and for the second

9(2)
n (x) = N(2)

n

∫ +∞

−∞
dp ξsne−ξ T̂ /2L2sn

n (ξ T̂ )C
(2)
0 (p)

= N(2)
n ξ snL2sn

n

(
−2ξ

∂

∂ξ

)∫ +∞

−∞
dp e−ξ T̂ /2C(2)0 (p)
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Figure 1. Phase-space densities calculated fromρn(x, p) = |9(2)
n (p, x)|2 with vibrational

quantum numbern = 0, 3. Panels 1(a) and (b) correspond to choosing(B(1), A(1)) for9(2)
n (p, x);

panels 2(a) and (b) to choosing(B(1), A(2)); panels 3(a) and (b) to choosing(B(2), A(1)). The
contour of each phase-space density distribution is shown at the bottom of its own panel.
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Figure 1. (Continued)
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Figure 1. (Continued)
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=
{
N(2)
n

∫ +∞

−∞
dp C(2)0 (p)

}
ξ sne−ξ/2L2sn

n (ξ) (17a)

φ(2)n (p) = N(2)
n

A(p)

B(p)sn

∫ +∞

−∞
dx e−ipx/h̄ξ sne−ξ/2L2sn

n (ξ). (17b)

Note that the integral in the second equality of equation (17a) is evaluated by expanding e−ξ T̂ /2

in a series about the derivative∂
∂p

and integrating the obtained integrand by parts.
It is evident that these two sets of projected solutions fulfil the Schrödinger equations in

their respective representations. From equations (16a) and (17a) we see that, no matter how the
arbitrary functionsC0(p) are chosen, the projectedψ(1,2)

n (x) are unique and at most differ by a
constant from one another. However, the projectedφ(1,2)n (p)are not unique, depending strongly
on the choices of the functionC0(p). It can be demonstrated that the Fourier transforms of
the projectedφ(1,2)n (p) into position space also satisfy the corresponding Schrödinger equation
in position space, but there is only one of them whose Fourier transform corresponds to the
uniqueL2 solution of the Schr̈odinger equation in coordinate space. At this point we can say
that other projected solutions in momentum space are physically meaningless.

An important feature common to the functionsA(p) and B(p) is that they remain
unchanged after successive actions of the momentum displacement operatorT̂ . A possible way
to generate this sort of function is first to select a fundamental characteristic function having
invariance under successive actions of theT̂ operator, of importance being the exponential
function, i.e.

T̂ ne±2πkp/h̄β = e±2πkp/h̄β (n, k = 1, 2, . . .) (18)

then to construct various elementary functions, polynomials, transcendental functions, and/or
series using this characteristic function, and finally to produce the required functionsA(p) and
B(p) from reasonable combinations of the functions constructed above.

As an illustration, we merely choose such two simple groups ofA(p) andB(p) for plotting
as 

B(1)(p) = λ0(ζ + ζ−1)sn+1

B(2)(p) = [λ1 + (ζ − λ2)
2(ζ − λ3)

2]sn+1

A(1)(p) = ζ 2e−λ4(ζ+ζ−1)

A(2)(p) = ζ 2 sin2(λ5ζ )e
−λ6(ζ+ζ−1)

(19)

whereζ = e−2πp/h̄β and λi , (i = 0, 1, . . . ,6) are any parameters larger than zero. For
the convenience of computation we takeλ2 = 0.4, λ3 = 4 andλi = 1 for i = 0, 1, 4, 5, 6.
Figure 1 gives six three-dimensional grid diagrams of the phase-space densities calculated from
ρn(x, p) = |ψ(2)

n (p, x)|2 with the combinations(B(1), A(1)), (B(1), A(2)), and(B(2), A(1)) for
vibrational quantum numbern = 0, 3.

The panels in figure 1 exhibit the interesting point that different functionsA(p) and
B(p) can significantly affect the nodal behaviours of wavefunctions which reflect vibrational
structures of a Morse oscillator in phase-space. Moreover, these panels are calculated and
plotted only for the specific values of parameterλi , (i = 0, 1, 2, . . . ,6) and thus the pictures
would get more and more complicated while changing the values of various parameters. It
is likely that the special values of some parameters could give rise to singularities of the
wavefunctions in phase-space.
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